

Collegamento RS232 & Protocollo MODBUS

Verifica della **qualità** dei segnali dei **bus di campo**

I bus di campo, denominati anche Fieldbus, sono una serie di fili elettrici che veicolano, sotto forma digitale, le informazioni fra 2 apparecchiature remote. Numerosi protocolli di bus esistono sul campo e in vari settori: industriale, automobilistico, automatismi per l'edilizia, ospedali...

Fra i protocolli di bus correntemente utilizzati, citiamo: KNX, DALI, CAN, LIN, FlexRay[™], AS-i, Profibus[®], RS-485, RS-232, ETHERNET...

Nell'ambito dei circuiti informatici, lo strato fisico è il primo strato del modello OSI (Open Systems Interconnection) e serve alla trasmissione effettiva dei segnali elettrici o ottici fra gli interlocutori. E' utile procedere con delle misure in questo livello fisico - elettrico onde ottimizzare la comunicazione ed effettuare una diagnostica: sostituzione di cavo, verifiche di messa terra, terminazione corretta...

Si illustra in questa sede il test di un collegamento RS232 fra un multimetro e un PC tramite un oscilloscopio che include il test fisico secondo le norme in vigore.

Test d'integrità fisica

Automotive

Industria

Automatismi per l'edilizia

Verifica della qualità dei segnali dei bus di campo

Caso pratico:

Test d'integrità fisica di un bus RS232 fra un multimetro e la porta COM1 di un PC

Materiale utilizzato

- SCOPIX BUS OX 7204: oscilloscopio analizzatore di bus
- Sonda HX 0130: sonda di tensione
- Scheda HX 0190 DB9: scheda didattica comunicazione RS232
- MTX 3283: multimetro digitale di campo 100.000 punti
- SX DMM: software di recupero dei dati del MTX 3283

Lo sapevate?

Il protocollo MODBUS è un protocollo di dialogo fondato su una struttura gerarchizzata fra varie periferiche.

Primo step

Il multimetro MTX Mobile MTX 3283 è collegato mediante sistema RS232, regolato a 9.600 baud e protocollo MODBUS, con il software di trattamento dei dati SX DMM.

Esempio di un'acquisizione di tensione continua

Secondo step

Inserire la scheda di collegamento **HX0190** DB9 sulla porta COM del PC (il software SX DMM rimane sempre in collegamento con il MTX 3283). La scheda costituisce infatti l'interfaccia fra il PC e il multimetro.

Terzo step

La sonda **HX0130** è collegata al canale 1 dello SCOPIX da una parte, e dall'altra parte mediante il coccodrillo fra i punti 2 o 3 e 5 della scheda di collegamento **HX0190**.

polo 2: Rx Dati (ricevimento di dati) polo 3: Tx Data (trasmissione di dati) polo 5: massa

La misura si effettua allora fra i poli 2 (o 3) e 5.

Quarto step

Impostare di seguito l'oscilloscopio SCOPIX OX 7204 BUS sul tipo di bus da testare. Selezionare RS232 a 9.600 bps, dopodiché confermare. Ora si può, lanciare la diagnostica premendo RUN. La durata è variabile secondo il bus selezionato, la norma coinvolta nonché i parametri da misurare. Lo schema di cablaggio presente sull'oscilloscopio vi aiuta a collegare la sonda.

Qui la diagnostica si realizza secondo la norma IEA 232 (la diagnostica completa dura 2 minuti). La norma IEA 232 standardizza i bus di comunicazione di tipo seriale.

Nel presente caso, la visualizzazione del risultato delle misure è globalmente scadente, ossia 0 %. La stima globale dell'integrità del bus in % tiene conto di tutte le singole misure.

A partire da questi risultati, si rileva che la comunicazione del cavo testato è scadente.

Esempio di risultato visualizzato su Scopix BUS: qui 0 %

Esempio: Selezione di bus su Scopix BUS

Astuzia

La lista dei vari tipi di BUS integrati nello Scopix è modificabile. E' possibile modificare ad esempio la velocità di un bus (cambio base di dei tempi) RS232 mediante il software SX BUS creando semplicemente un nuovo file di configurazione ".BUS".

100 % Una misura d'integrità del 100 % si visualizza su sfondo verde per indicare che tutte le singole misure hanno dato come risultato il loro valore nominale.

75 % ► Una misura d'integrità su sfondo giallo indica, in %, il numero di singole misure corrette rispetto al numero di misure totali (questo numero è > 50 %).

25 % Una misura d'integrità su sfondo rosso indica, in %, il numero di singole misure corrette rispetto al numero di misure totali (questo numero $\dot{e} \le 50$ %).

0 % ► Una misura d'integrità dello 0% su sfondo rosso indica che almeno una misura è fuori tolleranza.

Se non è stata effettuata una misura (assenza di segnale,...), si visualizzano trattini su sfondo rosso anziché la %. E' possibile constatare in questo esempio 2 parametri non misurati: Time Rise & Time Fall.

Quinto step

Un risultato scadente indica che le misure non sono state realizzate oppure sono fuori tolleranza. In questo caso è possibile modificare le tolleranze da norma direttamente sull'oscilloscopio e poi registrarle.

Esempio: tipico segnale RS232

- Tolleranz	a misure RS232-96	00bps II	ea-232	<u>a</u> e
	Min	Max	Avviso	
V level High	3.00 V	15.0 V	70.0 %	
V Level Low	-15.0 V	-3.00 V	70.0 %	
Time Data			70.0 %	
Time Rise		4.17µs	70.0 %	ОК
Time Fall 🗼		4.17µs	70.0 %	
Jitter		5.00 %	70.0 %	Cancelar
Over+			70.0 %	
Over-			70.0 %	

Esempio: tolleranze secondo la norma EIA 232

Esempio:

modifica della tolleranza del jitter.

Nei risultati visualizzati in alto, è possibile scorgere un risultato lontano dalle tolleranze in particolare nel parametro 'jitter'.

Si tratta del parametro che modificheremo nel presente esempio, utilizzando la light pen sul touch screen dell'oscilloscopio.

	Min	Max	divario	
🕑 V level High	5.00 V	5.03 V	67%	
V Level Low	-3.92 V	-3.90 V	85%	
Time Data	99.6µs	1 09µs		
Time Rise	240ns	272ns	7%	GUT T
Time Fal	1.14µs	1.30µs	31 %	
Uitter	0.3%	0.3%	6%	1
Over+	3.8%	4.9%		
Over-	3.6%	4.8%		

Esempio: Risultato visualizzato su Scopix BUS: I' 80 % Una volta registrate le modifiche di questi parametri, rilanciare una diagnostica (il nome del file Bus modificato è identificato da^{*}).

a misure RS232 9600bps IEA-232

Max

15.0 V

-5.00 V

4.17µs

4.17us

5.00 %

70.0 %

70.0 %

70.0 %

70.0 %

70.0 %

100 %

70.0 %

70.0 %

DK

Cancelar

Min

3.00 V

V level High

V Level Low

Time Data

Time Rise

Jitter

Over+

Over-

Time Fall

E' possibile registrare in formato ".html" i risultati ottenuti sull'oscilloscopio.

BUS DIAGNOSTIC RESULT (16/12, 07:14)
RS232 9600 bps IEA-232
Bus quality

Measurement	Min	Max	Error
V level High	5.01 V	5.04 V	67 %
V Level Low	-3.93 V	-3.90 V	85 %
Time Data	99.4 µs	109 µs	
Time Rise	240 ns	256 ns	6 %
Time Fall	1.17 µs	1.28 µs	31%
Jitter			
Over+	3.8 %	4.9 %	
Over-	3.0 %	5.1 %	

L'apertura di questo file è possibile con un browser su un PC collegato via Ethernet, o localmente, con l'oscilloscopio.

La presente tabella di diagnostica indica i principali problemi incontrati e le probabili cause. Il che permette una rapidissima diagnostica preliminare per un intervento mirato. Questa tabella è allegata al manuale d'uso dello SCOPIX BUS per guidarvi nelle vostre operazioni di manutenzione.

La presente tabella è anche integrata sotto SX BUS per affinare gli interventi.

Misura	Descrizione	Diagnostica
V Level High	Misura del livello alto del segnale	 Problemi di terminazione Lunghezza del cavo non conforme alla norma
V Level Low	Misura del livello basso del segnale	 Problema di massa perturbata Forte rumorosità (verificare la canaletta del cavo, eventuale schermatura del cavo non collegata a massa, massa difettosa,)
Time Rise	Tempo di salita fra -3 V e 3 V	 Lunghezza del cavo non conforme alla norma Problema d'impedenza del bus (i tempi di salita e di discesa
Time Fall	Tempo di discesa fra 3 V e -3 V	•
Jitter	Misura effettuata totalizzando i tempi dei bit	 Forte rumorosità (verificare la canaletta del cavo, eventuale scher- matura del cavo non collegata a massa, massa difettosa,)
Time Data	Misura effettuata totalizzando i tempi dei bit	 Forte rumorosità (verificare la canaletta del cavo, eventuale scher- matura del cavo non collegata a massa, massa difettosa,) Lunghezza del cavo non conforme alla norma Problema d'impedenza del bus (i tempi di salita e di discesa aumentano con l'impedenza del cavo)
Over-	Misura del superamento negativo	 Impedenza del cavo non conforme Problema di terminazione del bus (in caso d'assenza di terminazione foto europremento)
Over+	Misura del superamento positivo	 Forte rumorosità (verificare la canaletta del cavo, eventuale schermatura non collegata a massa, massa difettosa,)

Dopo sostituzione del cavo RS232, il test d'integrità viene reiterato. Ritroviamo i valori conformi alla norma EIA 232 senza modificare i parametri della norma.

RS232	9600bps	IEA-232		100%
	Min	Max	divario	
🗩 V level High	7.90 V	7.94 V	18%	
V Level Low	-7.96 V	-7.92 V	18%	
🗩 Time Data	1 0 3µs	1 03µs		
Time Rise	16.0ns	48.0ns	1%	-
🗩 Time Fall	16.0ns	48.0ns	1%	
Jitter	0.1 %	0.1 %	2%	
Over+	1.8%	2.3%		
Over-	1.9%	3.0%		

ITALIA AMRA SpA

AMIRA SpA Via S. Ambrogio, 23 20846 MACHERIO (MB) Tel: +39 039 245 75 45 Fax: +39 039 481 561 info@amra-chauvin-arnoux.it www.chauvin-arnoux.it SVIZZERA Chauvin Arnoux AG Moosacherstrasse 15 8804 AU / ZH Tel: +41 44 727 75 55 Fax: +41 44 727 75 56 info@chauvin-arnoux.ch www.chauvin-arnoux.ch

